
Query-focused summarization by supervised sentence ranking
and skewed word distributions

Seeger Fisher and Brian Roark
Center for Spoken Language Understanding

OGI School of Science & Engineering
Oregon Health & Science University

{fishers,roark }@cslu.ogi.edu

Abstract

We present a supervised sentence ranking
approach for use in extractive summariza-
tion. The supervised approach achieves
domain independence by making use of
a range of word distribution statistics as
features, of the sort typically used for un-
supervised domain-independent ranking.
We present empirical trials on the DUC
2006 query-directed multi-document sum-
marization task, and demonstrate that the
very general machine learning approaches
taken can provide competitive results for
this task. The general approach provides
great flexibility for incorporating many
more features.

1 Introduction

Sentence extraction summarization systems take as
input a collection of sentences (one or more doc-
uments) and select some subset for output into a
summary. This is best treated as a sentence rank-
ing problem, which allows for varying thresholds to
meet varying summary length requirements. Most
commonly, such ranking approaches use some kind
of similarity or centrality metric to rank sentences
for inclusion in the summary – see, for example, Lin
and Hovy (2002); Erkan and Radev (2004); Radev
et al. (2004); Blair-Goldensohn (2005); Biryukov et
al. (2005); Mihalcea and Tarau (2005) and the ref-
erences therein. Such an approach is typically pre-
ferred over supervised ranking approaches for rea-
sons of domain independence.

This paper presents an alternative approach,
whereby a number of similarity/centrality metrics
are used, not directly to rank the sentences, but

rather as features within a supervised machine learn-
ing paradigm. Since the features themselves are not
domain-specific, the benefit of domain generality is
retained, while still accruing the benefits of super-
vised learning.

We examine this approach within the context of
query-focused multi-document summarization, for
which there is much less training data for supervised
approaches than query-neutral multi-document sum-
marization. We address this through the use of
two separate ranking models: one trained on a
large collection of document clusters and associated
(query-neutral) manual summaries; the other trained
on a smaller data set from the 2005 DUC query-
focused multi-document summarization task, which
includes document clusters, queries, and the associ-
ated (query-focused) manual summaries. The scores
from the first ranker are used as features in the sec-
ond ranker. In addition to the use of two ranking
models, we achieve query responsiveness by skew-
ing the word distributions, which make up the fea-
tures of our models, towards the query. All of this
is achieved within a very general supervised ranking
paradigm, which is robust and domain independent.

In the next section we discuss in detail the
architecture and training of our system. We broke
the query-directed summarization problem down
into three tasks:
1. Text normalization and sentence segmentation
2. Sentence ranking

a. query-neutral ranking
b. query-focused ranking

3. Sentence selection from a ranked list
We then present the results of the DUC 2006 evalu-
ation, as well as of a number of experiments using
different algorithms and features on that evaluation
set.

2 Sentence extraction system
2.1 Text normalization

In the multi-document summarization data1 made
available for the Document Understanding Confer-
ences (DUC), each document set is a collection of
individual articles, each article in its own file. We
created one large text file for each document set by
concatenating the raw content text from each article,
discarding the meta-data. We then used a simple al-
gorithm to perform sentence segmentation, making
use of a list of common abbreviations extracted from
the Penn Treebank.

Feature extraction from sentences involved map-
ping words to a common form, by making them
lower case and removing any non-alpha-numeric
symbols at word boundaries. Words that occur only
once in the corpus were mapped to the “<unk>”
symbol. At test time, all non-singleton words in
the set of test clusters are added to the word list,
and term frequencies and document frequencies are
taken over both training and test sets. Note that we
do not perform any stemming or removal of stop-
words at this stage. This mapping is for feature ex-
traction only – the original sentence is maintained
for eventual output by the system if selected, al-
though some additional normalization is done at the
time of sentence selection (see section 2.3).

2.2 Supervised sentence ranking

For sentence ranking, we implemented a perceptron
ranker (Crammer and Singer, 2001). The percep-
tron ranker algorithm is an online conservative al-
gorithm that scores examples such that each score
falls into a bin, which is the rank of the example.
The algorithm learns a parameter vector of weights,
as well as a vector of rank boundaries. The weight
vector is combined with a given feature vector via
an inner-product to calculate the score of the sam-
ple. The rank boundaries are real numbers in one
dimension. The ranks associated with their respec-
tive boundaries are monotonically increasing. So,
a sample with rank (5) is closer to rank (6) than it
is to rank (7), this is what makes it a ranking al-
gorithm rather than a multiclass classification algo-
rithm. The update rules for the parameter vectors
change the weights such that the new score would

1http://duc.nist.gov/

be closer to the bin for the correct rank, and change
the rank boundaries such that the boundary for the
correct rank is closer to the original score. See the
PRank paper (Crammer and Singer, 2001) for de-
tails.

The objective we used for our supervised ranking
is the ROUGE-2 score as configured for the DUC-
05 evaluation, excepting that we enabled both stem-
ming and stop-word removal. For a 250 word sum-
mary we are typically only interested in the top 15
or so sentences in a document set (while allowing
for redundancy). As a result, we configured the per-
ceptron ranking algorithm to produce models with
only 3 ranks: the top 35 sentences in each cluster,
in terms of ROUGE-2 score, were in the top rank
(100), the next 65 were in the middle rank (50), and
the rest were in the low rank (1). Some clusters did
not have 100 sentences, or had less than 100 differ-
ent ROUGE-2 scores, in which case all of the lowest
scoring sentences were given the low rank. Within
each document cluster, feature values were normal-
ized by dividing by the maximum absolute value of
the raw feature value for any sentence in the cluster.

Unlike the perceptron ranking algorithm in Cram-
mer and Singer (2001), we used an averaged percep-
tron at test time to mitigate over-fitting of the train-
ing data (Collins, 2002). This common technique
averages the feature weights over all time steps when
it outputs the final model, thus reducing over-fitting.
At test time, we do not make use of the rank bound-
aries, hence calibrating the averaged parameters to
the boundaries was not an issue.

Because the features that we used are both small
in number and domain independent (see sections
2.2.1 and 2.2.2), there were a couple of issues related
to convergence on the training data that we had to
manage. First, we often had a very large number of
sentences with a rank of 1 (the worst), so that the al-
gorithm would sometimes learn to simply guess rank
1 for every sentence, since the vast majority of the
sentences were of that rank. We were able to control
for this in two ways: by either adding more features
(e.g., unigrams); or by using a random subset of the
rank 1 sentences, rather than the full set (Brinker and
Hullermeier, 2005). We found that the latter tech-
nique was the better approach, since it allowed us to
remain with a simple, domain independent feature
set.

A second, related issue, is that the limited feature
set is such that the algorithm cannot converge to per-
fect ranking performance on the training set. We
experimented with n-gram features, as mentioned
above; although this allowed the perceptron to con-
verge to the training data very accurately, it did not
improve ranking performance against our heldout
training data. We also experimented with a second
order polynomial kernel for the perceptron, which
increases the feature-space by effectively pairing all
of the original features with one another. This also
helped the perceptron to converge, but it also did not
significantly help with accuracy on the heldout data.

2.2.1 Query-neutral sentence ranking

The base feature set that we use is the same as was
used in our baseline system from DUC 2005 (Fisher
et al., 2005). For every cluster of documentsc in
the set of clustersC comprising the training set, let
Zc be the collection of manual summaries for that
cluster. Lets ∈ c be the sentences in clusterc and
z ∈ Zc be the sentences in the summaries of cluster
c. For every clusterc ∈ C we scored each sentence
s ∈ c as follows

ρ(s) = average
z∈Zc

(rouge(s, z))

where rouge(s, z) is the ROUGE score (Lin, 2004)
of sentences with z as the reference summary2. We
calculated this value for all sentences in each clus-
ter of the DUC 2001-2002 training data for sum-
maries of size 200 words and 400 words, giving us
our “gold standard” ranking for use in training the
base system.

For each sentence in a cluster, we extracted a
small number of features for ranking. Most of
these features are aggregated from word-based fea-
tures. Word-based features were of three varieties:
TF*IDF, log likelihood ratio, and log odds ratio
statistics. Letf(wc) be the frequency of wordw in
clusterc ∈ C. The version of TF*IDF that we make
use of is:

tf.idf(wc) =
log(f(wc))

|{c′ : f(wc′) > 0}|
(1)

Let w̄ denote words other thanw andc̄ denote clus-
ters other thanc. Let N be the total word count in

2For this work, we used ROUGE-2, with stemming and stop
words removed as our score.

1. average tf.idf 6. average logodds
2. sum tf.idf 7. sum logodds
3. average loglike 8. sum (max 3) logodds
4. sum loglike 9. Sentence position
5. sum (max 3) loglike

Table 1:Base feature set

our training corpus;f(w) the frequency of the word
over all clusters; andf(c) the number of words in
clusterc. Then the log likelihood ratio3 is defined as
follows:

loglike(wc) = log
α

β
(2)

where

α = f(c)f(c)f(w)f(w)f(w̄)f(w̄)f(c̄)f(c̄) (3)

and

β = NNf(wc)f(wc)f(w̄c)f(w̄c)f(wc̄)f(wc̄)f(w̄c̄)f(w̄c̄) (4)

The log odds ratio4 is defined as follows:

logodds(wc) = log
f(wc)f(w̄c̄)
f(w̄c)f(wc̄)

(5)

For each sentence we calculated both the average
and the sum of all three of these word-based statis-
tics as features. In addition, for the log odds and
log likelihood ratios, we calculated the sum of the
statistic for just the three highest scoring words in
the string. Our ninth and final feature in the sys-
tem last year was the position of the sentence in the
document. All of these feature values were normal-
ized within their document set, by dividing the raw
values by the highest absolute raw value in the doc-
ument set. Table 1 summarizes the base feature set.

Beyond these base features, we added the features
from Table 1 for both the immediately previous and
immediately following sentences as features for the
current sentence, effectively tripling the number of
features. The improvement due to these “neighbor”
features is presented in section 3.

Using multiple similarity or centrality metrics as
features is useful because all of these features score
co-occurrence dependencies differently. For exam-
ple, the log likelihood ratio captures whether a word

3See (Dunning, 1993) for an excellent presentation of the
log likelihood ratio statistic.

4See, e.g., (Agresti, 1996) for a nice presentation of the log
odds ratio statistic.

and a cluster occur together at chance or not, and all
scores are positive. A high score can indicate that
the word and the cluster either occur together sur-
prisingly often or surprisingly rarely. The log odds
ratio, in contrast, can be positive or negative – posi-
tive indicating that the co-occurrence is surprisingly
often, negative that it is surprisingly rare, i.e., they
are negatively correlated. In addition, the log odds
ratio appears to be somewhat more sensitive than the
log likelihood ratio to the distribution of relatively
infrequent words, which can be quite useful for this
task. Hence, including both rather than choosing
between them, provides additional sensitivity to the
kinds of patterns that discriminate between good and
poor sentences for extraction.

To summarize, our base feature set for each sen-
tence consists of the values of the features in Table
1 for the sentence, as well as the values for those
features in the immediately previous and following
sentences.

2.2.2 Query-focused sentence ranking

Lexical overlap
The baseline system from DUC 2005 (Fisher et
al., 2005) achieved query-focused summaries via a
crude lexical overlap metric. For a given document
set, sentences were binned into three sets, depend-
ing on the number of non-stop words from the query
that were in the sentence. The first set included sen-
tences with two or more query words (not counting
stop words); sentences in the second set had 1 query
word; and the last set contains sentences without
query words. Within each set, the sentences were or-
dered by the query-neutral ranking. Sentences were
then selected for the summary (see section 2.3) from
the first set, in order, until it was exhausted, then
from the second until it was exhausted, and finally
from the third set. This approach performed surpris-
ingly well in the DUC-2005 evaluation.

One simple extension to the above approach is to
allow for as many sets as there are different query
word counts in sentences, rather than just 3 sets.
Thus, a set for those with 10 non-stop query words,
another set for those with 9, etc. In effect, this is a
type of cosine similarity metric between the query
and each sentence, with the query-neutral ranking
being used to break ties between sentences with the
same cosine score.

Skewing word distributions
To achieve query-sensitivity within the context of
a single supervised ranking system, we examined
skewing word distributions towards the query for
purposes of calculating distribution sensitive fea-
tures. Recall that we have a number of features (see
table 1) that rely on the distribution of a word in the
document set relative to its distribution in the corpus.
We skew the word distributions towards the query
in a document set by adding the counts of each of
the non-stop query words, multiplied by an empir-
ically determined factor, to the counts of words in
the document set. In effect, non-stop query words
have their counts increased in the document set for
purposes of calculating the word-distribution sensi-
tive features. The result is that when extracting fea-
tures from a sentence, words that are in the query
will have relatively larger feature values, by virtue
of having higher document set counts. When the in-
dividual words have larger values, the feature val-
ues for sentences containing those words will also
be higher.

Note that this approach allows us to train the mod-
els on non-skewed training data, with the query-
focused skewing happening at test time. Hence,
large amounts of query-neutral multi-document
summarization training data can be exploited. With
this approach, we can get query sensitivity within
a very simple ranking approach. This has the ad-
ditional benefit of being able to convert the ranking
score to a normalized probability (via softmax), thus
allowing the use of these scores as features in an-
other stage of ranking.
Re-ranking
The first-pass ranking model in our approach is
trained on query-neutral summarization data. Given
that we now have a small amount of query-sensitive
training data from the DUC-2005 evaluation set, we
can build a specifically query-focused reranker from
this data. As with the query-neutral ranking, we
used the perceptron ranking algorithm.

The sentences are first ranked using the skewing
approach described above, and the output from this
step (the softmax normalized perceptron score) is
one of the features input to the reranker. In ad-
dition to this feature, which has its weight empiri-
cally fixed, the reranker has two other sets of fea-
tures for which it learns parameter weights. These

are features characterizing the number of non-stop
query words in the sentence. We first partition the
set of non-stop query words into two subsets: those
with log likelihoods higher than a fixed threshold
and those with log likelihoods lower than the thresh-
old. The log likelihood is calculated for each query
word for that cluster, using unskewed counts. Then,
for each subsets, there are five indicator features: 0
words in the sentence froms; at least 1 word in the
sentence froms; at least 2 words froms; at least 3
words; and at least 4 words. For the trials reported
here, the partitioning threshold was set empirically
at 10.

For training the reranker, we used 29 of the DUC-
2005 document sets as training data, 5 of them as
held-aside data (for stopping training), and 16 as de-
velopment data for testing different features. We
fixed the weight of the baseline ranker at 1000.

2.3 Sentence selection

At the sentence selection stage, we removed any sen-
tence less than 5 words or greater than 50 words in
length. The restriction on being too short is based on
the intuition that in an extraction system, anything
too short will be meaningless out of context. The re-
striction on being too long is a simple way to keep
the system from extracting long lists, which gener-
ally do not make a good summary. In addition, any
sentence that begins or ends with a quotation mark
was also filtered out. Finally, sentences beginning
with a pronoun were removed, to avoid the most ob-
vious cases of poor anaphora resolution.

At this point we also applied some simple com-
pression to the remaining sentences. Namely,
we removed any paired parentheticals, defined as
stretches of text in a sentence that were delimited
by parentheses, single dashes, or em-dashes.

In the baseline system from DUC-2005 (Fisher et
al., 2005), sentences were selected in order based
on the final ranking, until the summary size limit
was reached, with some sentences being removed
for lack of novelty, as follows. Stop-words were re-
moved from a candidate sentence, then the remain-
ing words were stemmed and the unigram overlap
with stemmed non-stop words already in the sum-
mary was calculated. If the overlap amounted to 50
percent or less of the non-stop words in the candi-
date, the candidate was added to the summary, oth-

System ROUGE-2 ROUGE-SU4
OGI-06 0.08525 0.14090

OGI-05 0.07601 0.13126
OGI-05+cos 0.08178 0.13764

Table 2: Comparison of our DUC-05 and DUC-06 systems
tested on the DUC-06 data. The OGI-05 system was as
entered at DUC-05. The OGI-05+cos system is the same
system as OGI-05, but now with query-focus based on the
cosine measure, rather than just the 3 bins of the original.
The OGI-06 system is the system entered at DUC-06. It uses
a perceptron for ranking and reranking, and has a number
of other differences from the 2005 versions, as described above.

erwise it was discarded.
For the current system, we also select sentences

in the final ranking order, while skipping some due
to overlap. In this system, we removed stop words
from the candidate, but did not stem the remain-
ing words. Also, we measured bigram overlap in-
stead of unigram overlap. In addition, rather than
just using 50 percent overlap as the cutoff, we tried
differing thresholds, making the threshold progres-
sively more restrictive until the resulting ROUGE
scores dropped significantly. Our final threshold
was 65 percent new bigrams for a candidate to be
added. Finally, we ordered the extracted sentences
by document-id, and then by order they occurred in
the document.

3 Results

3.1 DUC 2006 Results

The OGI-06 system was competitive in the field of
participants in DUC 2006. Its ROUGE scores are
shown in the first row of Table 2. According to the
official results, in a field of 34 entries, the OGI-06
system was 8th in ROUGE-2, 9th in ROUGE SU-4,
4th in Basic Elements (BE) scoring, 19th in query
responsiveness (manually scored), and 4th in over-
all responsiveness (also manual). Based on this, it
appears that there is substantial room to improve our
query responsiveness (see future directions), but that
the summary quality that results from our general
approach is relatively high. We hypothesize that the
high overall responsiveness and BE scores are due
to the syntactic well-formedness of the bulk of our
summaries, resulting from the limited compression
applied to the output.

In order to determine whether the current system

Focus Method ROUGE-2 ROUGE-SU4
Cosine 0.08356 0.14031
Skew 0.08404 0.13768
Skew + Rerank 0.08525 0.14090

Table 3: Results from our different approaches to query-
sensitivity, otherwise using the DUC-06 system. The Cosine
method is a ranking by the number of query words (minus
stops) in a sentence, with ties broken by the non-query-sensitive
perceptron ranking. The Skew method is our approach that
skews the counts of non-stop query words for purposes of
calculating word statistic features (e.g., log-likelihood ratio)
for ranking. The Skew+Rerank version is our submitted system
as described above.

is an improvement over that of Fisher et al. (2005),
we evaluated both systems against the DUC-2006
test set. We used the official DUC 2006 configu-
rations for ROUGE. As can be seen in Table 2, the
overall ROUGE scores increase substantially from
the 2005 to 2006 system. Table 2 also shows that by
changing the 2005 system to use the improved co-
sine similarity metric for query sensitivity (see dis-
cussion above) roughly half of the gap between the
two systems is closed. Much of the remaining im-
provement is explained in the next section on the
different results for query-focusing.

3.2 Query-focused sentence ranking

This year we experimented with several different
methods for focusing the summaries to a query, as
described above. We first tried using a cosine simi-
larity metric between the query and candidate sen-
tence. Then we developed a novel method that
skews the word distributions towards the query be-
fore calculating word based statistical features. By
skewing the word distributions we obviated the need
for calculating the cosine similarity, and now had a
single ranking score that proved as effective as any
other method we had tried. Once we had an effec-
tive single ranking score, we used that and several
other query related features in a reranker with the
DUC 2005 data for training. The results are shown
in Table 3 .

As can be seen in Table 3 , the cosine method
and skew method perform similarly. However, the
skew method allows us to incorporate its output into
a reranker, which performs better than either the
cosine or skew methods alone. Due to time con-
straints, we did not experiment with as many fea-

0 2 4 6 8 100.076

0.078

0.08

0.082

0.084

0.086

0.088

log (query word weight)

ro
ug

e
2

Figure 1:Natural log of the weight given to additional query
word counts versus the system rouge 2 score on the DUC-2006
evaluation set.

tures in the reranker as we might have; we expect
to be able to improve on that score. As mentioned
previously, query responsiveness is where the sys-
tem scores comparatively poorly. See section 4 for
future directions.

3.2.1 Word distribution skewing

The skewing of word distributions towards the
query as described above proved quite effective. The
counts of each non-stop word in the query that also
appeared in the document set were: (1) multiplied
by a fixed weight; and (2) added to the document set
counts. We determined the query word weight em-
pirically. The additional counts applied to the doc-
ument set, and thus also needed to be temporarily
added to the overall corpus counts when calculating
features for the document set. In Figure 1, the im-
provement of the system, as measured by ROUGE-
2, is shown as a function of the log of the query word
weighting.

For our submitted system, as well as for other fea-
ture sets we experimented with, the optimal query
word weight was generally about 1000, which was
the deployed value in reported systems. Based on
the graph in Figure 1, the best value for this evalua-
tion would have been at around 1500, but the sensi-
tivity to this parameter, at least when it is above 50,
is relatively low.

3.3 Feature Analysis

In order to see which features were most important
for inference, we trained the system on subsets of
the total feature set. A comparison of several fea-
ture configurations with the NIST baseline is given
in Table 4 .

The NIST baseline is just the firstn sentences up
to 250 words. Our system with no features ranks

Features ROUGE-2 ROUGE-SU4
NIST baseline 0.04947 0.09788
none 0.05547 0.10847
position 0.06650 0.11839
all 0.08404 0.13768
all + reranking 0.08525 0.14090

Table 4: Our system performance against the NIST baseline
using no features, only the position feature, all features and all
features plus reranking. Note that all of these systems use the
query word skewing, but that it has no effect for the ‘none’ and
‘position’ models since there are no word distribution features
in those models.

sentences in the same way as the NIST baseline.
However, the ROUGE scores are improved over the
NIST scores because our sentence selection stage fil-
ters redundant sentences. Adding only the position
feature improves the performance by a large amount.
The position only model simply learns to pick the
first sentence in each document, but when combined
with the sentence selection stage, the performance
is much better than either the NIST baseline or the
model with no features. The model with all features,
but no reranking, is much better than the position
only model. The reranking model with its current
feature set is only slightly better than the skewed
word-distribution only model.

3.3.1 Skewing without reranking

We evaluated the skewing without reranking con-
figuration with a number of different feature combi-
nations. The combination of all of our features pro-
vides the best performance on the DUC 2006 data.
A summary of the system performance using differ-
ent feature combinations is given in Table 5 .

It appears that the log-odds ratio may be more
important than the log-likelihood ratio when skew-
ing the counts. One reason for this may be that the
log-odds ratio can be negative, indicating an anti-
correlation, while the log-likelihood ratio is always
positive, indicating the degree of surprise. When
we skew the distributions of the query words, words
in the document set that are overall very common
(e.g.,president) may now become very uncharacter-
istic of the document set. This actually increases
the log likelihood ratio score for that word, since a
high score indicates either surprisingly many or sur-
prisingly few co-occurrences. The log odds score
avoids this ambiguity, since surprisingly few co-

Features ROUGE-2 ROUGE-SU4
position 0.06650 0.11839
tfidf+position 0.06467 0.11707
ll+position 0.07418 0.12602
lo+position 0.07535 0.12665
tfidf+ll+position 0.07981 0.13561
tfidf+lo+position 0.08264 0.13425
ll+lo+position 0.07744 0.12982
tfidf+ll+lo+position 0.08404 0.13768

Table 5:The different features are: sentence position, TFIDF,
log-likelihood ratio, log-odds ratio. Each row shows the set of
features included in the model. All of these models used word
distribution skewing without reranking.

occurrences are scored negatively.
Because the denominator of our tf.idf score is the

raw inverse document frequency, it is particularly
high for words that occur in no other cluster, relative
to the log-likelihood and log-odds. This favors very
specific terms, for example, proper nouns over com-
mon nouns, even those that may be highly correlated
with the cluster. Hence, while this feature does not
perform particularly well on its own – as shown in
Table 5 – it is very complementary with the other
scores, and provides substantial system improve-
ments when included with the other scores. When
used with the log likelihood or log odds scores, the
ranker learns negative weights for the tf.idf features,
thus penalizing words when they have high tf.idf
feature values. If those words do not have high log
likelihood or log odds scores to offset such a penalty,
they will be dispreferred.

3.3.2 Reranking

Evaluating different feature configurations of the
base ranker when using the reranker did not provide
as interesting results as with the skewing models.
This is because the reranker features are themselves
log-likelihood based, via the partitioning threshold,
and thus even when the log-likelihood features are
removed from the base ranker, something similar is
still being used by the reranker. The small differ-
ence between just the position feature and all fea-
tures shown in Table 6 is the result of the reranker
having extra log-likelihood features that are always
being used.

In order to determine the utility of the surround-
ing sentence features , we ran the evaluation with
and without those features. We left all of the base
features in, but removed those features for either the

Features ROUGE-2 ROUGE-SU4
position 0.08355 0.13930
all features 0.08525 0.14090

Table 6: Performance of the reranker system when the base
ranker uses just the position feature, or all of the features.

previous, the following, or both the previous and
following sentences. These configurations, summa-
rized in Table 7, are with reranking. Not surpris-
ingly, having the statistics for either the previous
sentence or both of the surrounding sentences im-
proves the overall score. Having features for the
statistics of just the following sentence does not
help, if anything it hurts performance by a little.

4 Summary and future directions

Our new summarizer substantially improves over
our 2005 entry at DUC. We improved query-
sensitivity by introducing a novel approach that
skews word distributions in a document set towards
the query, while using a query-neutral ranker with
those skewed distributions. The new summarizer
improved performance further by making use of
a query-focused reranker that takes as input the
skewed query-neutral rankings, as well as some
query related features. Using this query-focused
reranker was possible due to the DUC-2005 data
for training the model. In addition, we improved
through the use of novel features, such as the “neigh-
boring” sentence features.

There are a number of ways to improve the cur-
rent system. The current system does not perform
any query expansion. Query expansion should work
well with our word distribution approach, and it ap-
pears to help other systems significantly. The feature
set for the reranker is another area we will explore,
as we experimented with relatively few different fea-
tures for the current system. Though including all
unigrams as features led to over-fitting, we would
like to find a subset of lexical n-gram features that
are relevant to indicating importance and applica-
bility to inclusion in a summary. We also want to
include features that are indicative of what sort of
question the query is. Another set of features to ex-
plore are discourse connectives, and how they relate
one clause to another. Because of the general ma-
chine learning framework, incorporation of a range

Features ROUGE-2 ROUGE-SU4
neither 0.08243 0.13826
previous 0.08367 0.13952
following 0.08181 0.13878
both 0.08525 0.14090

Table 7: The change in score as a result of surrounding
sentence features. These results are for the system using the
reranker.

of additional features (e.g., query expansion or dis-
course segmentation) or stages of processing (e.g.,
anaphora resolution) is relatively straightforward.

References
A. Agresti. 1996. Introduction to Categorical Data Analysis.

John Wiley and Sons, New York.

M. Biryukov, R. Angheluta, and M.F. Moens. 2005. Multidoc-
ument question answering text summarization using topic
signatures.Journal on Digital Information Management.

S. Blair-Goldensohn. 2005. Columbia University at DUC
2005. InDocument Understanding Workshop (DUC) 2005.

K. Brinker and E. Hullermeier. 2005. Calibrated label-ranking.
In Learning To Rank Workshop, NIPS 2005.

M.J. Collins. 2002. Discriminative training methods for hidden
Markov models: Theory and experiments with perceptron
algorithms. InProceedings of the Conference on Empirical
Methods in Natural Language Processing (EMNLP), pages
1–8.

K. Crammer and Y. Singer. 2001. Pranking with ranking. In
Neural Information Processing Systems. NIPS.

T. Dunning. 1993. Accurate methods for the statistics
of surprise and coincidence.Computational Linguistics,
19(1):61–74.

G. Erkan and D. Radev. 2004. Lexpagerank: Prestige in multi-
document text summarization. InProceedings of EMNLP.

S. Fisher, B. Roark, J. Yang, and B. Hersh. 2005. OGI/OHSU
baseline query-directed multi-document summarization sys-
tem for duc-2005. InProceedings of the Document Under-
standing Workshop (DUC).

C.Y. Lin and E. Hovy. 2002. Automated multi-document sum-
marization in NeATS. InProceedings of the Human Lan-
guage Technology Conference.

C.Y. Lin. 2004. Rouge: a package for automatic evaluation of
summaries. InWorkshop in Text Summarization, ACL’04.

R. Mihalcea and P. Tarau. 2005. An algorithm for language in-
dependent single and multiple document summarization. In
Proceedings of the International Joint Conference on Natu-
ral Language Processing (IJCNLP).

D. Radev, T. Allison, S. Blair-Goldensohn, J. Blitzer, A. Çelebi,
S. Dimitrov, E. Drabek, A. Hakim, W. Lam, D. Liu, J. Otter-
bacher, H. Qi, H. Saggion, S. Teufel, M. Topper, A. Winkel,
and Z. Zhang. 2004. MEAD - a platform for multidocument
multilingual text summarization. InLREC, Lisbon, Portu-
gal.

